In the farthest reaches of space, a volatile battle is taking place between two forces so great, they may eventually destroy the very universe itself. Known as Dark Matter and Dark Energy, these opposing forces have the capacity to rip apart the universe atom-by-atom. While scientists have previously theorised about a “Big Crunch” where the universe retracts back to its original size, the discovery of Dark Matter and Dark Energy has placed that hypothesis on the backburner. Some astronomers now believe that if Dark Matter offsets Dark Energy then as the universe slowly expands, stars will gradually fade, running out of fuel and leading to a dark, cold and lifeless universe. Others hypothesise a much more violent end where Dark Energy continues to expand the universe at a greater and greater speed. Stronger than gravity, Dark Energy would pull apart everything.
 

At a particular instant roughly 15 billion years ago, all the matter and energy we can observe, concentrated in a region smaller than a dime, began to expand and cool at an incredibly rapid rate. By the time the temperature had dropped to 100 million times that of the sun’s core, the forces of nature assumed their present properties, and the elementary particles known as quarks roamed freely in a sea of energy. When the universe had expanded an additional 1,000 times, all the matter we can measure filled a region the size of the solar system.

At that time, the free quarks became confined in neutrons and protons. After the universe had grown by another factor of 1,000, protons and neutrons combined to form atomic nuclei, including most of the helium and deuterium present today. All of this occurred within the first minute of the expansion. Conditions were still too hot, however, for atomic nuclei to capture electrons. Neutral atoms appeared in abundance only after the expansion had continued for 300,000 years and the universe was 1,000 times smaller than it is now. The neutral atoms then began to coalesce into gas clouds, which later evolved into stars. By the time the universe had expanded to one fifth its present size, the stars had formed groups recognizable as young galaxies.

When the universe was half its present size, nuclear reactions in stars had produced most of the heavy elements from which terrestrial planets were made. Our solar system is relatively young: it formed five billion years ago, when the universe was two thirds its present size. Over time the formation of stars has consumed the supply of gas in galaxies, and hence the population of stars is waning. Fifteen billion years from now stars like our sun will be relatively rare, making the universe a far less hospitable place for observers like us.


Our understanding of the genesis and evolution of the universe is one of the great achievements of 20th-century science. This knowledge comes from decades of innovative experiments and theories. Modern telescopes on the ground and in space detect the light from galaxies billions of light-years away, showing us what the universe looked like when it was young. Particle accelerators probe the basic physics of the high-energy environment of the early universe. Satellites detect the cosmic background radiation left over from the early stages of expansion, providing an image of the universe on the largest scales we can observe.


Our best efforts to explain this wealth of data are embodied in a theory known as the standard cosmological model or the big bang cosmology. The major claim of the theory is that in the largescale average the universe is expanding in a nearly homogeneous way from a dense early state. At present, there are no fundamental challenges to the big bang theory, although there are certainly unresolved issues within the theory itself. Astronomers are not sure, for example, how the galaxies were formed, but there is no reason to think the process did not occur within the framework of the big bang. Indeed, the predictions of the theory have survived all tests to date.


Yet the big bang model goes only so far, and many fundamental mysteries remain. What was the universe like before it was expanding? (No observation we have made allows us to look back beyond the moment at which the expansion began.) What will happen in the distant future, when the last of the stars exhaust the supply of nuclear fuel? No one knows the answers yet.


Our universe may be viewed in many lights—by mystics, theologians, philosophers or scientists. In science we adopt the plodding route: we accept only what is tested by experiment or observation. Albert Einstein gave us the now well-tested and accepted Theory of General Relativity, which establishes the relations between mass, energy, space and time. Einstein showed that a homogeneous distribution of matter in space fits nicely with his theory. He assumed without discussion that the universe is static, unchanging in the large-scale average [see “How Cosmology Became a Science,” by Stephen G. Brush; SCIENTIFIC AMERICAN, August 1992].

In 1922 the Russian theorist Alexander A. Friedmann realized that Einstein’s universe is unstable; the slightest perturbation would cause it to expand or contract. At that time, Vesto M. Slipher of Lowell Observatory was collecting the first evidence that galaxies are actually moving apart. Then, in 1929, the eminent astronomer Edwin P. Hubble showed that the rate a galaxy is moving away from us is roughly proportional to its distance from us.

The existence of an expanding universe implies that the cosmos has evolved from a dense concentration of matter into the present broadly spread distribution of galaxies. Fred Hoyle, an English cosmologist, was the first to call this process the big bang. Hoyle intended to disparage the theory, but the name was so catchy it gained popularity. It is somewhat misleading, however, to describe the expansion as some type of explosion of matter away from some particular point in space.


That is not the picture at all: in Einstein’s universe the concept of space and the distribution of matter are intimately linked; the observed expansion of the system of galaxies reveals the unfolding of space itself. An essential feature of the theory is that the average density in space declines as the universe expands; the distribution of matter forms no observable edge. In an explosion the fastest particles move out into empty space, but in the big bang cosmology, particles uniformly fill all space. The expansion of the universe has had little influence on the size of galaxies or even clusters of galaxies that are bound by gravity; space is simply opening up between them. In this sense, the expansion is similar to a rising loaf of raisin bread. The dough is analogous to space, and the raisins, to clusters of galaxies. As the dough expands, the raisins move apart. Moreover, the speed with which any two raisins move apart is directly and positively related to the amount of dough separating them.

The evidence for the expansion of the universe has been accumulating for some 60 years. The first important clue is the redshift. A galaxy emits or absorbs some wavelengths of light more strongly than others. If the galaxy is moving away from us, these emission and absorption features are shifted to longer wavelengths—that is, they become redder as the recession velocity increases. This phenomenon is known as the redshift.


Hubble’s measurements indicated that the redshift of a distant galaxy is greater than that of one closer to the earth. This relation, now known as Hubble’s law, is just what one would expect in a uniformly expanding universe. Hubble’s law says the recession velocity of a galaxy is equal to its distance multiplied by a quantity called Hubble’s constant. The redshift effect in nearby galaxies is relatively subtle, requiring good instrumentation to detect it. In contrast, the redshift of very distant objects—radio galaxies and quasars—is an awesome phenomenon; some appear to be moving away at greater than 90 percent of the speed of light.

Hubble contributed to another crucial part of the picture. He counted the number of visible galaxies in different directions in the sky and found that they appear to be rather uniformly distributed. The value of Hubble’s constant seemed to be the same in all directions, a necessary consequence of uniform expansion. Modern surveys confirm the fundamental tenet that the universe is homogeneous on large scales. Although maps of the distribution of the nearby galaxies display clumpiness, deeper surveys reveal considerable uniformity.


The Milky Way, for instance, resides in a knot of two dozen galaxies; these in turn are part of a complex of galaxies that protrudes from the so-called local supercluster. The hierarchy of clustering has been traced up to dimensions of about 500 million light-years. The fluctuations in the average density of matter diminish as the scale of the structure being investigated increases. In maps that cover distances that reach close to the observable limit, the average density of matter changes by less than a tenth of a percent.


To test Hubble’s law, astronomers need to measure distances to galaxies. One method for gauging distance is to observe the apparent brightness of a galaxy. If one galaxy is four times fainter in the night sky than an otherwise comparable galaxy, then it can be estimated to be twice as far away. This expectation has now been tested over the whole of the visible range of distances.